Overview of DICOM and the open source ecosystem



Why use DICOM?

e Universal standard for medical imaging

e Don't lose data
o Get all the details from the scanner

o Well-defined representations with documentation



How to think about DICOM

o Each "dataset" is an instance of a "class" with strongly typed instance variables
(called "elements")
o Instances can be stored as files (called Part-10 files after the section of the
standard describing them)

o Instances can be grouped when they share unique IDs

o The sequence of instances are like a logfile of what the scanner generated and it's up
to the application to sort through them to determine the relationships and map them
into useful constructs like Volumes, Segmentations, etc.

e To create DICOM instances the application populates the elements to link it with the
other instances as appropriate



Some of the more useful DICOM classes

e Imaging: CT, MR, PET, US...
o Orginal scan data

Segmentation: SEG
o Image based labeling of structures

Structured Reporting: SR
o Vector annotations, quantifications, qualitative findings

Radiotherapy: RT
o Doses, plans, structures...

Parametric Maps: PM
o Images with defined quantities and units

Spatial Registration: SRO
o Linear and nonlinear with explicit frames of reference

Whole Slide Images: WSI
o Microscopy images, possibly multichannel with annotations in SR



DICOM networking

e DIMSE is tradional "PACS" networking used worldwide
o Both endpoints need custom configuration

o Best for use within controlled firewalls

e DICOMweb is uses modern REST API concepts
o Better suited to internet and security

o Introduced JSON header encoding



DICOM Implementations: Java, C#

o PixelMed toolkit, open source, but intended for reference not for community use
e FairOaks
e probably others...



DICOM Implementations: C++

GDCM: traditional implementation used in ITK

DCMTK: also widely used in ITK and many other places

CommonTK (CTK)
o DCMTK + Qt * SQLite

o Core of Slicer's DICOM module

dcmaqi: convenience interface over DCMTK to support encoding of analysis results in
DICOM



DICOM Implementations: Python

e pydicom
o Widely used, bundled with Slicer

o Maps instances to python objects and numpy arrays

e pydicomnet
o Implements DIMSE with pydicom

e dicomweb-client

o Implements DICOMweb with pydicom
e highdicom (new)

o Adds SEG, SR, etc on pydicom



DICOM Implementations: JavaScript

e dicomParser, cornerstone, OHIF
o Layers of the Open Health Imaging Foundation stack

e dcmjs.org
o dcmjs: maps instances to/from JavaScript classes
= original: emscripten cross-compiled DCMTK

= current: pure JavaScript (browser/server)
o dicomweb-client/dicomweb-server: DICOMweb on dcmjs
o dcmjs-dimse (new): DIMSE on dcmjs (server only)
e Can be used in gSlicerWebWidget


http://dcmjs.org/

DICOM in Slicer

DICOM module supports local database and DIMSE networking

DICOM Plugins examine related instances to propose mappings to Slicer datatypes,
export Sicer data to DICOM

e DICOMwebBrowser query/retrieve/store and support Google DICOMweb stores
securely

DICOM Plugins provided by SlicerRT, QuantitativeReporting, PET...



Summary

e Supporting all of DICOM is a huge task
e Community is very active tools are becoming very capable

e |nteroperability is improving
o Slicer-generated segmentations in OHIF

o OHIF structured report annotations in Slicer

o highdicom encoded machine learning results in Slicer and OHIF



